Categorías
···
Entrar / Registro
Senior AI/AIOps Engineer
Salario negociable
Indeed
Tiempo completo
Presencial
Sin requisito de experiencia
Sin requisito de título
2222+22 Hernández, S.L.P., Mexico
Favoritos
Compartir
Descripción

**What You’ll Be Doing (Core Mission)** * **Design and implement** large\-scale, fault\-tolerant data pipelines on OCI, using services like **OCI Data Integration** , **OCI Data Flow (Apache Spark)** , **Object Storage** , and **Autonomous Database** . * Build and manage **streaming data architectures** using tools such as **OCI GoldenGate** , **Apache Kafka** , and **Spark/Flink Streaming** . * Enforce standards and automation across the **entire data lifecycle** , including schema evolution, dataset migration, and deprecation strategies. * Improve platform **resilience, data quality, and observability** with advanced monitoring, alerting, and automated data governance. * Serve as a **technical leader** , mentoring junior engineers, reviewing designs and code, and promoting engineering best practices. * Collaborate cross\-functionally with ML engineers, platform teams, and data scientists to integrate data services with AI/ML workloads. * Partner in **AI pipeline enablement** , ensuring Lakehouse services efficiently support model training, feature engineering, and real\-time inference. **Required Technical Skills \& Experience** **Engineering \& Infrastructure** * 5\+ years building **distributed systems** or **production\-grade data platforms** in the cloud. * Strong coding proficiency in **Python** , **Java** , or **Scala** , with an emphasis on performance and reliability. * Expertise in **SQL and PLSQL** , data modeling, and query optimization. * Proven experience with **cloud\-native architectures** —especially **OCI** , AWS, Azure, or GCP. **Lakehouse \& Streaming Mastery** * Deep knowledge of **modern lakehouse/table formats** : **Apache Iceberg** , **Delta Lake** , or **Apache Hudi** . * Production experience with **big data compute engines** : **Spark** , **Flink** , or **Trino** . * Skilled in **real\-time streaming** and event\-driven architectures using **Kafka** , **Flink** , **GoldenGate** , or **Streaming** . * Experience managing **data lakes** , catalogs, and metadata governance in large\-scale environments. **AI/ML Integration** * Hands\-on experience enabling **ML pipelines** : from data ingestion to model training and deployment. * Familiarity with **ML frameworks** (e.g., **PyTorch** , **XGBoost** , **scikit\-learn** ). * Understanding of **modern ML architectures** : including **RAG** , **prompt chaining** , and **agent\-based workflows** . * Awareness of **MLOps practices** , including model versioning, feature stores, and integration with AI pipelines. **DevOps \& Operational Excellence** * Deep understanding of **CI/CD** , infrastructure\-as\-code (IaC), and release automation using tools like **Terraform** , **GitHub Actions** , or **CloudFormation** . * Experience with **Docker** , **Kubernetes** , and **cloud\-native container orchestration** . * Strong focus on **testing, documentation** , and system observability (Prometheus, Grafana, ELK stack). * Comfortable with **cost/performance tuning** , incident response, and data security standards (IAM, encryption, auditing). **Preferred Qualifications** * Experience with **Oracle’s cloud\-native tools** : **OCI Data Integration** , **Data Flow** , **Autonomous Database** , **GoldenGate** , **OCI Streaming** . * Experience with **query engines** like **Trino** or **Presto** , and tools like **dbt** or **Apache Airflow** . * Familiarity with **data cataloging** , **RBAC/ABAC** , and enterprise data governance frameworks. * Exposure to **vector databases** and **LLM tooling** (embeddings, vector search, prompt orchestration). * Solid understanding of **data warehouse design principles** , star/snowflake schemas, and ETL optimization. **Minimum Qualifications** * Bachelor’s or Master’s degree in **Computer Science** , **Engineering** , or related technical field. * 4–6 year’s experience designing and building **cloud\-based data pipelines** and **distributed systems** . * Proficiency in at least one core language: **Python** , **Java** , or **Scala** . * Familiar with lakehouse formats (Iceberg, Delta, Hudi), file formats (Parquet, ORC, Avro), and streaming platforms (Kafka, Kinesis). * Strong understanding of distributed systems fundamentals: **partitioning** , **replication** , **idempotency** , **consensus protocols** . **Soft Skills \& Team Expectations** * Proven ability to lead technical initiatives **independently end\-to\-end** . * Comfortable working in **cross\-functional teams** and mentoring junior engineers. * Excellent **problem\-solving skills** , design thinking, and attention to operational excellence. * Passion for **learning emerging data and AI technologies** and sharing knowledge across teams.

Fuentea:  indeed Ver publicación original
Juan García
Indeed · HR

Compañía

Indeed
Juan García
Indeed · HR
Activa ahora
Empleos similares

Cookie
Configuración de cookies
Nuestras aplicaciones
Download
Descargar en
APP Store
Download
Consíguelo en
Google Play
© 2025 Servanan International Pte. Ltd.